Hydrogen Storage by Nanosprings

We have demonstrated that silica nanosprings can reversibly store 0.85 wt% of hydrogen at 20 bar at room temperature. If they are decorated with Pd nanoparticles, they can reversibly store 3.5 wt% of hydrogen at 66 bar at room temperature. We attribute the hydrogen storage capacity of bare nanosprings to their unique geometry, where one nanospring is comprised of 5-8 nanowires coherently coiled. This morphology produces channels, where at the bottom of the channel a stable energy potential at room temperature in which hydrogen can settle. In the case of Pd decorated nanosprings, we believe that spillover promotes atomic hydrogen to diffuse onto the silica nanosprings. Details of this work can be found in our paper at http://stacks.iop.org/JPhysD/46/505307


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: